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To extend our molecular dynamics studies of nucleation in molecular clusters undergoing phase changes, we
selected the acetylene system whose clusters had already been examined experimentally in supersonic flow.
Because molecular dynamics simulations based on the several existing model potential functions were incapable
of accounting for the structure of the low-temperature orthorhombic phase, a new interaction potential was
developed which successfully yielded the correct molecular packing at low temperatures as well as the cubic
structure observed at high temperatures. The results obtained in heating and cooling runs for the model
system were unlike any seen in our prior simulations. There was no nucleation barrier inhibiting the passage
from the cubic to the orthorhombic phase on cooling, nor were there discernible volume or enthalpy changes
in the transformation. In clusters of several hundred molecules the apparently second-order or continuous
transition was spread over a much wider range of temperatures than had been seen in first-order transitions
in previous simulations. Although the results provide an instructive example of an unusual type of
transformation, they do not appear to correspond to the transition observed experimentally for pure, bulk
acetylene.

Introduction

A variety of solid state and freezing transitions have been
observed in large molecular clusters as they cool in supersonic
flow.1 Several of these transitions have also been seen to occur
spontaneously in molecular dynamics (MD) simulations of
cooling clusters.2-7 Clusters are particularly convenient systems
for MD simulations of phase transitions because clusters avoid
the severe limitations imposed by periodic boundary conditions.
In both the experimental and computational research it is
possible to determine rates of genuinely homogeneous nucle-
ation, a notoriously difficult phenomenon to achieve, verify,
and characterize by more conventional techniques. In the MD
simulations, in particular, it is possible to observe directly the
formation of critical nuclei, the key but elusive entities of
nucleation theory. Because an entirely satisfactory theory has
yet to be formulated, it seemed worthwhile to continue studies
of nucleation by MD techniques. Previous results had been for
substances composed of spherical top and symmetric top
molecules. So far, no transitions of linear molecules have been
reported in MD investigations of clusters even though phase
changes have been seen in experiments on clusters of acetylene8

and (the quasilinear) dimethylacetylene.9 Indeed, clusters of
the latter substance froze to an unknown phase giving an
anomalous diffraction pattern. It seemed possible that MD
simulations might help to determine the solid structure because
such simulations had previously resolved the unknown structure
to whichtert-butyl chloride transformed when cooled.10 When
attempts to devise a potential function capable of reproducing
the known phases of dimethylacetylene were unsuccessful, it
was decided to investigate acetylene itself.
As will be discussed presently, the several potential functions

already proposed for acetylene gave inadequate accounts of the
material in MD simulations. Therefore, an alternative potential
function was sought. When a simple one was found that did
yield a stable orthorhombic phase of approximately the correct
structure in simulations at low temperatures and correctly
reproduced the packing of the stable cubic phase at warmer

temperatures, it was decided to investigate the nucleation
phenomenon responsible for the transition from cubic to
orthorhombic as warm clusters were cooled. Our prior modeling
of nucleation in solid state phase transitions had suggested that
the qualitative behavior of clusters did not depend sensitively
upon the exact values of the potential parameters applied as
long as the potential function was sufficiently realistic to
reproduce the essential structural aspects of the phases involved.
The present results pour cold water on this generalization.
We point out at once that the results we obtained do not

correspond to what is believed to be the behavior of the real
substance, despite the fact that the model accounted fairly well
for the structures at high and low temperatures. Even though
our computations yielded a transition entirely different in
character from that of true acetylene, the results are so striking
and unlike anything our simulations have shown before that
they offer an instructive example. Therefore, we report an
account of the molecular behavior taking place in what appears
to be a second-order or continuous phase transition more like
Ehrenfest’s textbook classification11 than like the continuous
lambda transitions found in nature.12

Thermodynamic Properties

Because pure acetylene is a hazardous material, its thermo-
dynamic properties are not known with precision. It has two
crystalline phases, orthorhombic below 133 K and cubic. Cubic
acetylene sublimes at 189.6 K and melts at 191.7 K under a
pressure of about 1.2 atm.13 Its heat of sublimation is reported
to be 23.0 kJ/mol,13 and despite several conflicting values
reported, its heat of vaporization appears to be about 16.6 kJ/
mol,14making the entropy of fusion of the plastically crystalline
material approximately 4 R. As far as we are aware, the heat
of transition from the orthorhombic to the cubic phase has not
been measured.

Crystal Structures

The low-temperature phase is orthorhombic, space group
Acam, Z ) 4, with lattice constants at 4.2 K ofa ) 6.193,b )
6.005, andc) 5.551 Å.15 The high-temperature phase is cubic,X Abstract published inAdVance ACS Abstracts,February 1, 1997.
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space groupPa3, Z ) 4, with a ) 6.091 Å at 141 K.16 In the
orthorhombic phase, molecules lie in layers parallel to the 001
plane with orientations nearly parallel to theabdiagonals, giving
rise to interwoven chains of T configurations. In the cubic
phase, the molecules are oriented along the body diagonals of
the cube.

Intermolecular Potential Functions

Several model interaction potentials for acetylene have been
proposed in the literature, all of which were based to some extent
upon the multipole moments found in anab initio quantum study
of the monomer by Amos andWilliams.17 Hirshfeld and Mirsky
(HM) constructed a model field with exp-6-1 atom-atom
interactions,18 adjusting the Coulomb terms to reproduce ap-
proximately the electric moments of Amos andWilliams (0.312e
on hydrogen,-0.312eon carbon, CtC length of 1.207 Å, and
C-H length of 1.059 Å). Lattice energy calculations gave a
somewhat lower cubic cell constant (5.65 Å) and a somewhat
higher heat of sublimation (25.9 kJ/mol) than observed. Mo-
lecular dynamics computations by Klein and McDonald19

incorporating the HM field yielded lattice frequencies that were
too high. Calculations of phonon dispersion curves by Gamba
and Bonadeo20 (GB) showed that the HM field applied to the
orthorhombic phase led to imaginary frequencies. Molecular
dynamics computations carried out in the present investigation
confirmed that the HM field does not yield a stable orthorhombic
phase.
Filippini, Gramaccioli, and Simonetta21 (FGS) tried a number

of existing semiempirical atom-atom potentials to compute
some of the properties of the cubic and orthorhombic phases.
They found that Williams’ exp-6-122 and Lifson’s 9-6-123
potentials, which account very well for properties of many solid
hydrocarbons, account poorly for the solid phases of acetylene.
One of the disagreements found was that the calculated lattice
vibrational frequencies were much higher than the experimental
frequencies unless parameters were modified to reduce the
calculated sublimation energy to about half the reported
experimental value. The selected parameters included atomic
charges only about half those implied by theab initio electric
moments. Another problem for the FGS potential parameters
was that they were unable to account for the observed ortho-
rhombic phase. Basing their conjecture on the fact that prior
treatments of organic solids with similar interaction potentials
had given good results, FGS suggested that the trouble might
well lie in inaccuracies in the reported determinations of the
sublimation energy and orthorhombic crystal structure.
Klein and McDonald19 applied both the HM and the FGS

model fields in their molecular dynamics simulations of the
liquid and cubic phases of acetylene. They found discrepancies
in calculated properties of the cubic phase of the sort commented
upon by the previous authors and echoed the call for more
reliable experimental data. They did not report on the otho-
rhombic phase.
In a study overlooked by us until after completion of our

molecular dynamics computations, Gamba and Bonadeo20

reported calculations of phonon dispersion curves of solid
acetylene. When they used atom-atom Buckingham functions
augmented by electric moments similar to those tried by HM
and FGS, they encountered the same discrepancies as those
noted previously. They discovered, however, that if they
distributed four dipoles along the molecular axis in such a way
as to retain the quadrupole and hexadecapole moments but to
double the 26 multipole moment, the main troubles encountered
before vanished. No longer did computations with the experi-
mental orthorhombic phase give imaginary frequencies indica-

tive of negative force constants serving to destabilize the
observed packing. Gamba and Bonadeo likened the situation
to that for the crystal structures of the halogens, examples for
which simple atom-atom exp-6-1 potential functions are also
unable to account for the observed structures. Our opinion is
that the principal problem encountered in the HM and FGS
comparisons with experiment isnot that the experimental results
are unreliable but that the model potential functions, themselves,
are deficient.
The above discussion of the historical background of the

problem, however germane it may be to the ultimate resolution
of the modeling of crystalline acetylene, is somewhat beside
the point of the present treatment. As mentioned in the
Introduction, the value of our approach is not in its reproduction
of the properties of solid acetylene (though it does yield the
correct packing for both the low- and high-temperature struc-
tures) but rather as an example of a type of transition not
heretofore encountered in MD simulations of clusters.
Present Model. As pointed out by Gamba and Bonadeo,

the problem of modeling the orthorhombic structure of acetylene
may be closely analogous to that of modeling the crystal
structures of Cl2 and related substances. Simple atom-atom
models are inadequate. Various authors have attributed the
specific interactions needed to explain the molecular packing
to charge-transfer or donor-acceptor forces,24 to higher mul-
tipole forces,25,20 or to aspherical atoms.26 Recent work by
Price26 calling attention to the latter factor has been particularly
persuasive. Therefore, when our initial attempts to model
orthorhombic acetylene failed in the same way as those of HM
and FGS, we tested the simplest aspherical model for carbon
atoms imaginable, that of placing a pseudoatom at the center
of the triple bond. Before assigning LJ parameters to this site,
we simply gave it the charge normally allocated to the carbons,
a charge of such magnitude (0.54e) as to give moments of 6.76
D Å and 17.64 D Å3, reproducing, approximately, the 22 and
24 electric moments of Amos and Williams. This gave a 26

moment similar to that of the HM model, but only half that of
the successful GB model. Nevertheless, when the model yielded
the correct molecular orientations for the orthorhombic phase
in potential energy minimizations, we decided to go ahead with
MD simulations to explore the consequences.
Carbon-carbon and carbon-hydrogen bond lengths were

taken to be 1.21 and 1.01 Å, respectively, the latter distance
being shorter than the internuclear distance in order to incor-
porate the “foreshortening” found by Williams27 to correct
approximately for the nonspherical charge distribution of
electrons around a hydrogen atom in a C-H bond. The
remaining intermolecular interactions in the present model were
pairwise additive atom-atom Lennard-Jones functions whose
parameters are listed in Table 1. It seemed necessary to make
the hydrogen atoms smaller than usual to achieve the desired
molecular orientations in the low-temperature phase.

Lattice Energy Minimization

Lattice energy minimization calculations were carried out on
the cubic and the orthorhombic phases using the Williams
MPA96 program.28 The cubic cell volume was found to be
150.80 Å3 with a lattice constanta) 5.3228 Å. The converged

TABLE 1: Lennard-Jones Parameters for Intermolecular
Potential Function for Acetylenea

atom pair H-H C-C C-H

σ, Å 1.4 3.4 2.1817
ε, kJ/mol 0.10 0.35 0.1870

a For charge distribution, see text.
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lattice energy was-33.03 kJ/mol, out of which-25.39 kJ/
mol came from the Coulombic part. For the orthorhombic
phase, the model yielded a cell volume of 158.61 Å3 with a )
5.2281,b ) 5.2847, andc ) 5.7408 Å. The lattice energy per
molecule was-34.33 kJ/mol, of which the Coulombic contribu-
tion was-28.98 kJ/mol. Cell dimensions and energies can be
seen to be in only very crude agreement with experiment.

MD Simulations

Simulations were performed at constant energy on clusters
containing 137, 217, and 435 molecules of acetylene. In view
of the cluster’s free boundaries, the systems corresponded
essentially to (NPH) ensembles. Approximately spherical
clusters were carved out of a lattice with the ideal orthorhombic
molecular packing. Appropriate quarternions were generated
to match the orientations of the molecules observed in the bulk
crystal. Linear and angular velocities were set to zero to start
with. Newton’s equations of motion were solved numerically
using the fifth-order predictor-corrector algorithm. An integra-
tion timestep of 3 fs was found to yield good energy conserva-
tion. Equilibration in a heat bath, during both heating and
cooling stages, was carried out for 4000 time steps with
velocities rescaled at each step. Velocity scaling was then
switched off, and constant energy MD trajectories were followed
for another 4000 time steps. Thermodynamic averages such
as potential energy, temperature, total energy, etc., were
accumulated, and coordinates, quarternions, center-of-mass
velocities, etc., of all the molecules were saved every 20 steps
during the constant energy period. The bath temperature was
increased by 10 K every 8000 steps (half of which were in the
heat bath). Runs were continued until the molecules started to
evaporate from the cluster. Subsequently, cooling runs were
initiated with clusters containing 139, 217, and 429 molecules,
each carved from an ideal cubic lattice of acetylene. Each of
these clusters was then cooled from 160 to 20 K in steps of 10
K. The rate of cooling was the same as the rate of heating,
that is, 10 K per 8000 steps.
Clusters were found to rotate because of nonconservation of

angular momentum during velocity rescaling. This spurious
rotation was nulled out using a standard Gauss-Newton least-
squares procedure described elsewhere.29 Autocorrelation analy-
ses of configurational energies were carried out to establish the
effective number of statistically independent configurations.
Various diagonostic tests were applied to monitor the structural
changes. For example, the temperature dependence of the
configurational energy was followed, and images of the mo-
lecular arrangements were examined using the proprietary
software MACSPIN. Pawley projections30 of molecular ori-
entations were studied. Specific heats of the individual clusters
were calculated via the NPH ensemble fluctuation formula31 as
well as from the slopes of the caloric curves. These analyses
showed that the caloric data yielded substantially more precise
results. Error analyses are sketched briefly in the Appendix.

Results

Figure 1 verifies that the present model correctly reproduces
the molecular orientations in the low-temperature orthorhombic
phase. Figure 2 displays the caloric curves during the heating
and cooling of the 217-molecule cluster. Although the initial
structures of the heating and cooling runs were prepared quite
differently, the two caloric curves are almost identical. Despite
the fact that the structure changed from orthorhombic to cubic,
and vice versa, the curves are essentially smooth and devoid of
inflection points and hysteresis of the type always seen in our
prior MD simulations of clusters undergoing a phase change.

In previous runs on crystalline clusters it has been found that
surface molecules tend to be appreciably more disordered than
molecules in the core, whereas core molecules behave very
nearly like those of the bulk. For a cluster ofNmolecules, we
consider the fraction

of the molecules to lie in surface. In Figures 3 and 4 are shown
MACSPIN images of the core of the 217-cluster during heating
and cooling, viewed along thea axis. At 20 K, the image
corresponded to the orthorhombic structure. As the cluster was
heated the amplitudes of the out-of-plane molecular displace-
ments increased markedly, but the cluster retained its character
up to about 100 K. At 110 K, the visual appearance of the
cluster began to approach that of the cubic phase. Although
the core remained cubic until 170 K, the cluster surface had
begun to melt. Molecules began to evaporate at 190 K. Images
at various stages of cooling indicate that the cluster remained
cubic until about 110 K and then began to change to ortho-
rhombic at 100 K. Figures 5 and 6 are Pawley projections of
the core molecules of the 217-molecule cluster during heating
and cooling viewed along thea axis. These dot plots confirm
that the most characteristic aspect of the structural change occurs
between 100 and 110 K but that the overall change is continuous
over a wide temperature range. Orientational disorder in both
phases is evident in the dot plots at all temperatures. For an
ideal orthorhombic crystal there would be just two highly

Figure 1. View down thec axis of the low-temperature orthorhombic
unit cell derived from the lattice energy minimization calculations using
the present potential model. The large and small circles represent the
carbon and hydrogen atoms, respectively. The full circles correspond
to molecules atz ) 0 and the open ones toz ) c/2. Molecular
orientations agree closely with those observed in ref 15 but cannot be
accounted for by the HM or FGS model fields.

Figure 2. Configurational energy per molecule vs temperature for the
217-molecule cluster during heating (filled circles) and cooling (crosses)
stages. Despite the fact that the starting configurations of the heating
(and cooling) runs were nearly spherical clusters of the ideal ortho-
rhombic (and cubic) phases and, hence, were different, the curves agree
closely.

F ) 3(4π/3N)1/3(1- 0.5(4π/3N)1/3)2
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localized areas of dots in the plot, but thermal motions in the
clusters broaden these to elongated patches instead. The
orientation of the patches shows that out-of-plane displacements
are of much greater amplitude than the in-plane motions.
Clearly, the softening of the out-of-plane force constant is the
leading factor promoting the phase change. In Figure 7 are
plotted the temperature variations of the cell constants during

heating. Orthorhombic lattice constants converge to the single
cubic constant upon heating. Figure 8 shows heat capacities
for clusters containing 137, 217, and 435 molecules. These
reveal little evidence, beyond the statistical noise, of a localized
jump corresponding to an enthalpy difference between the
phases. The upsweep at the higher temperatures signals the
onset of surface melting.

Discussion

It is well understood that clusters composed of limited
numbers of molecules cannot undergo abrupt transitions with

Figure 3. View down thea axis of the core of the 217-molecule cluster
at various stages of the heating runs: (a) 20, (b) 60, (c) 100, (d) 110,
(e) 140, and (f) 160 K. Images were generated from the last step of the
MD runs after nulling out the rotation of the cluster. Out-of-plane
excursions of molecules increase markedly as the cluster is warmed.

Figure 4. Images corresponding to those of Figure 3 but for cooling
runs: (a) 160, (b) 140, (c) 110, (d) 100, (e) 60, and (f) 20 K.

Figure 5. Pawley projections of bond directions in the core of the
217-molecule cluster during heating stages: (a) 20, (b) 60, (c) 100,
(d) 110, (e) 140, and (f) 160 K. Orientational disorder is persistent at
all temperatures.

Figure 6. Pawley projections corresponding to those of Figure 5 but
for cooling runs. (a) 160, (b) 140, (c) 110, (d) 100, (e) 60, and (f) 20
K.
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sharp transition temperatures even if the structural changes
involved correspond convincingly to those of first-order phase
changes of the same substance in the bulk. Although the
transitions in clusters take place over a range of temperatures,
the thermal signatures are nevertheless readily recognizable, and
many diagnostic tools exist to characterize the transitions. As
a matter of taste, some thermodynamicists prefer not to consider
small clusters as having definite phases or as undergoing first-
order phase transitions. Nevertheless, to avoid tedious circum-
locutions in the following, we shall simply speak of the phaselike
structures of molecular clusters as phases and make inferences
about transitions more on the basis of analogy with bulk
structures than on sharpness of changes in thermodynamic
properties.
The most striking result of the present simulations is the

continuous, reversible passage between the cubic and the

orthorhombic structures, structures which correspond to distinct
phases in the real compound. Our simulations show that there
is no discernible nucleation barrier separating the orthorhombic
from the cubic. In all of our prior simulations of phase changes
in clusters undergoing cooling, a nucleation barrier had made
it its presence felt by requiring significant supercooling in order
to overcome the barrier. An analogous barrier has not appeared
in heating runs because the somewhat disordered cluster surface
has always contained large enough pockets of precursors of the
higher temperature phase to obviate the need for nucleation
events. This makes heating runs quite reproducible whereas
cooling runs, with the element of chance involved in the
formation of a critical nucleus, are not reproducible. Hence, a
greater or smaller degree of hysteresis in caloric curves had
always characterized our previous phase changes. No such
behavior was seen in the present runs.
In all published MC and MD runs on systems of atomic and

molecular clusters undergoing transitions, the caloric curves have
exhibited conspicuous inflection points corresponding to a shift
in enthalpy from one structure to another. No clear evidence
of an enthalpy difference between the two structures was
apparent in the present caloric curves. Even so, in the region
over which the structural changes are most conspicuous,
fluctuations in the configurational energy in the present runs
seem to be slightly elevated as if the structures differ in energy
by a minor amount, but this is more or less within the statistical
noise.
In our prior studies of clusters in transition as they were

cooled, a region of the new phase could be seen growing in the
old phase. An interface between the two phases was present.
By contrast, in the present simulation, the entire cluster changed
continuously, and there was no evidence of the coexistence of
two distinct phases. None of the foregoing justifies a description
of the transition as first order, however liberally the meaning is
interpreted.
Ehrenfest11 classified a transition as first order if the first

derivatives of the free energy with respect to temperature and
pressure (i.e., volume, entropy, and enthalpy) were discontinuous
and second order if these quantities were continuous but the
second derivatives (e.g., heat capacity) were not. Higher-order
transitions were postulated. Experience has indicated that
transitions with continuous volumes and entropies are associated
with critical points for which higher derivatives tend to diverge
rather than simply being discontinuous.32,12 Superconducting
transitions are an exception.12 Because of the resemblance of
the divergent heat capacities to the 11th Greek letter, such
transitions became known as lambda transitions, and they are
commonly called “continuous”, rather than second-order transi-
tions. Typical examples of such phase changes are found among
the perovskites which can undergo transitions in which ortho-
rhombic lattices merge to tetragonal, then to cubic, continuously
as the temperature is increased. Therefore, volumes and
enthalpies vary continuously. Several of these have been
modeled by constant pressure MD simulations33-35with periodic
boundary conditions. Although the heat capacities of the real
systems do exhibit the lambda shape,36 this aspect of the
simulations was not discussed. In the one case we are aware
of in which configurational energies were reported, no evidence
of the lambda behavior was evident, and hence, the transforma-
tion appeared to correspond to a second-order transition with
little change in heat capacity.35 In this respect, the change
resembled that of the present simulations.
In the present simulations the orthorhombic lattice constants

a, b, andc converge to the cubic constant, making the volume
change continuous. That and the lack of a detectable enthalpy

Figure 7. Temperature dependence of the lattice constantsa (squares),
b (open circles), andc (filled circles). Continuous lines are simply to
guide the eye through the region of fluctuations.

Figure 8. Heat capacities of the clusters calculated from the slopes of
the caloric curves (filled circles) and from fluctuations in the potential
energy (crosses) during heating stages. Error bars correspond to 2σ.
The kinetic energy contribution to the heat capacity (5N- 6)R/2Nwas
added in each case to obtain the total heat capacity for the system of
N rigid molecules. (a) 137-molecule cluster, (b) 217-molecule cluster,
and (c) 435-molecule cluster.
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change would seem to qualify the structural change as a
continuous change, second-order rather than a lambda transition
in the loose sense we are using for clusters. On the other hand,
not even the heat capacity undergoes enough of a change in
the region of the transition to make it closely resemble the
Ehrenfest definition. We do not want to belabor fine distinctions
here. What seems to be the case is that the structural change
in our model acetylene has the earmarks of a second-order
transition with thermal properties smeared out by virtue of the
smallness of the clusters examined. Continuous transitions in
the bulk take place at a sharply defined temperature.
That the nominally first-order transitions of clusters are spread

over a range of temperatures can be understood semiquantita-
tively on the basis of the capillary model, as exemplified by
the treatment of Riess, Mirabel, and Whetten.37 Such an
approach seriously underestimates the range, however, mainly
because the capillary approximation neglects effects of the
thickness of the interface between the phases.2 In the case of
second-order transitions where there is no interfacial free energy,
the capillary model does not apply, and no alternative is readily
available. The present results suggest that the range of
temperatures over which such a transition takes place in a cluster
is considerably greater than that for first-order transitions.
The question remains as to whether the qualitative behavior

of the model acetylene mimics that of the real material in any
sense besides the structural characteristics at high and low
temperatures. The answer appears to be negative. Crystals of
cubic acetylene shatter upon cooling through the 133 K transition
temperature, and the lattice frequencies change discontinu-
ously.38,39 Therefore it is almost certain that the real substance,
unlike the model, undergoes a first-order transition. We
conclude that our original goal has failed to be met. What was
found, instead, is a model system with remarkable properties
providing an enlightening example of a higher-order transition.
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Appendix

Statistical errors in heat capacities derived from fluctuations
in the potential energy for an NPH ensemble were calculated
from the following relation:

wherene is the effective number of statistically uncorrelated
saved MD dumps at a given temperature. To take correlation
into account we assume that

whereS is the sum of the autocorrelation coefficients over the
correlated region of the dumps andnT is the total number of
MD dumps. This rough approximation gives the correct limits
for moderately correlated data (S . 1, treated by Allen and
Tildesley40) and for uncorrelated data (S) 1).

Statistical errors in heat capacities derived from the slopes
of the caloric curves were taken to be

in view of the negative correlation between potential energyU
and kinetic energy (and, hence,T), whereCu is the contribution
to the heat capacity from configurational energy.
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